QuikSCAT wind retrievals for tropical cyclones

نویسندگان

  • Simon Yueh
  • Bryan W. Stiles
  • W. Timothy Liu
چکیده

The use of QuikSCAT data for wind retrievals of tropical cyclones is described. The evidence of QuikSCAT 0 dependence on wind direction for 30-m/s wind speeds is presented. The QuikSCAT 0 show a peak-to-peak wind direction modulation of 1 dB at 35-m/s wind speed, and the amplitude of modulation decreases with increasing wind speed. The decreasing directional sensitivity to wind speed agrees well with the trend of QSCAT1 model function at near 20 m/s. A correction of the QSCAT1 model function for above 23-m/s wind speed is proposed. We explored two microwave radiative transfer models to correct the attenuation and scattering effects of rain for wind retrievals. One is derived from the collocated QuikSCAT and Special Sensor Microwave/Imager (SSM/I) dataset, and the other one is a published parametric model developed for rain radars. These two radiative transfer models account for the effects of volume scattering, scattering from rain-roughened surfaces and rain attenuation. The models suggest that the 0 of wind-roughened sea surfaces for 40–50-m/s winds are comparable to the 0 of rain contributions for up to about 10–15 mm/h. Both radiative transfer models have been used to retrieve the ocean wind vectors from the collocated QuikSCAT and SSM/I rain rate data for several tropical cyclones. The resulting wind speed estimates of these tropical cyclones show improved agreement with the wind fields derived from the best track analysis and Holland’s model for up to about 15-mm/h SSM/I rain rate. A comparative analysis of maximum wind speed estimates suggests that other rain parameters likely have to be considered for further improvements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QuikSCAT geophysical model function for tropical cyclones and application to Hurricane Floyd

The QuikSCAT radar measurements of several tropical cyclones in 1999 have been studied to develop the geophysical model function (GMF) of Ku-band radar 0s for extreme high wind conditions. To account for the effects of precipitation, we analyze the co-located rain rates from the Special Sensor Microwave/Imager (SSM/I) and propose the rain rate as a parameter of the GMF. The analysis indicates t...

متن کامل

Tropical Cyclone Wind Retrievals from the Advanced Microwave Sounding Unit: Application to Surface Wind Analysis

Horizontal winds at 850 hPa from tropical cyclones retrieved using the nonlinear balance equation, where the mass field was determined from Advanced Microwave Sounding Unit (AMSU) temperature soundings, are compared with the surface wind fields derived from NASA’s Quick Scatterometer (QuikSCAT) and Hurricane Research Division H*Wind analyses. It was found that the AMSU-derived wind speeds at 85...

متن کامل

Improved Hurricane Wind Speed Algorithm for the SeaWinds Satellite Scatterometer

Abszracl-Satellite microwave scatterometer wind retrievals, given in the standard product (e.g., QuikSCAT LZB), badly underestimate the peak wind speed in tropical cyclones. One important reason is that the effects of precipitation on the normalized radar cross section sigma-0 are neglected in the processing algorithms. This paper presents results of a first attempt to provide sigma-0 correctio...

متن کامل

A Non-MLE Approach for Satellite Scatterometer Wind Vector Retrievals in Tropical Cyclones

Satellite microwave scatterometers are the principal source of global synoptic-scale ocean vector wind (OVW) measurements for a number of scientific and operational oceanic wind applications. However, for extreme wind events such as tropical cyclones, their performance is significantly degraded. This paper presents a novel OVW retrieval algorithm for tropical cyclones which improves the accurac...

متن کامل

Seawinds Improved Ocean Vector Wind Retrievals in Hurricanes

The most pressing issue for the Ku-band scatterometer is associated with the measurement of ocean surface winds in tropical cyclones in the presence of precipitation, which can significantly degrade the wind vector retrieval. Furthermore, at high wind speeds (> 32 m/s), the measurements suffer from radar backscatter saturation effects. Since the spatial resolution of satellite scatterometer and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2003